Chapter 2
Introduction to MPI: The Message
Passing Interface

2.1 MPI for Parallel Programming: Communicating
with Messages

Programming parallel algorithms is far more delicate than programming sequential
algorithms. And so is debugging parallel programs too! Indeed, there exists several
abstract models of “parallel machines” (parallel computations, distributed computa-
tions) with different kinds of parallel programming paradigms: For example, let us
mention:

e Vector super-computers that rely on the programming model called Single Instruc-
tion Multiple Data (SIMD) with their optimized code based on pipelined opera-
tions,

e Multi-core machines with shared memory and their programming model using
multi-threading, with all threads potentially accessing the shared memory. Pro-
grams can be easily crashing and it is difficult to debug sometimes due to potential
conflicts when accessing concurrently a shared resource,

o Clusters of computer machines interconnected by a high-speed network that have
a distributed memory.

It is precisely this last category of “parallel machines”, the clusters of machines,
that we are focusing on in this textbook: namely, parallel programming paradigm
with distributed memory. Each computer can execute programs using its own local
memory. Executed programs can be the same on all computers or can be different.
Cooperation takes place by sending and receiving messages among these intercon-
nected computers to accomplish their overall task.

Speaking on the size of these clusters, we can distinguish between:

e small-size to mid-size clusters of computers (say, dozens to hundreds, sometimes
thousands, of computer nodes) that communicate with each other by sending and
receiving messages, and

e large-size clusters (thousands to hundreds of thousands, sometimes millions
computers) that execute rather simpler codes targeting Big Data processing.

© Springer International Publishing Switzerland 2016 21

F. Nielsen, Introduction to HPC with MPI for Data Science, Undergraduate
Topics in Computer Science, DOI 10.1007/978-3-319-21903-5_2

22 2 Introduction to MPI: The Message Passing Interface

Usually, these large-size clusters are programmed using the MapReduce/Hadoop
programming model.

The Message Passing Interface (or MPI for short) standard is a programming
interface: namely, an Application Programming Interface (API) that defines prop-
erly the syntax and full semantic of a software library that provides standardized
basic routines to build complex programs thereof. Thus the MPI interface allows
one to code parallel programs exchanging data by sending and receiving messages
encapsulating those data. Using an API has the advantage of leaving the program-
mer free of the many details concerning the implementation of the fine details of
implementing from scratch network procedures, and allows the ecosystem (acad-
emy, industry, programmers) to benefit of interoperability and portability of source
codes. It is important to emphasize the fact that the MPI API does not depend on the
underlying programming language it uses. Thus we can use MPI commands with
the most common (sequential) programming languages like C, C++, Java, Fortran,
Python and so on. That is, several language bindings of the MPI API are available.

MPI historically got initiated from a workshop organized in 1991 on distributed
memory environments. Nowadays, we use the third version of the standard, MPI-
3, which standardization has been completed and published openly in 2008. We
shall choose OpenMPI (http://www.open-mpi.org/) to illustrate the programming
examples in this book.

Let us emphasize that the MPI interface is the dominant programming interface
for parallel algorithms with distributed memory in the HPC community. The strong
argument in favor of MPI is the standardization of many (i) global routines of com-
munication (like broadcasting, the routine that consists in sending a message to all
other machines) and (ii) many primitives to perform global calculations (like com-
puting a cumulative sum of data distributed among all machines using an aggregation
mechanism). In practice, the complexity of these global communications and calcu-
lation operations depend on the underlying topology of the interconnection network
of the machines of the cluster.

2.2 Parallel Programming Models, Threads and Processes

Modern operating systems are multi-tasks: from the user viewpoint, several non-
blocking applications seem to be executed (run) “simultaneously”. This is merely
an illusion since on a single Central Processing Unit (CPU) there can be only one
program instruction at a time being executed. In other words, on the CPU, there is a
current process being executed while the others are blocked (suspended or waiting
to be waked up) and wait their turn to be executed on the CPU. It is the role of the
task scheduler to allocate dynamically processes to CPU.

Modern CPUs have several cores that are independent Processing Units (PUs) that
can execute truly in parallel on each core a thread. Multi-core architectures yield the
multi-threading programming paradigm that allows for concurrency. For example,

http://www.open-mpi.org/

2.2 Parallel Programming Models, Threads and Processes 23

your favorite Internet WEB browser allows you to visualize simultaneously several
pages in their own tabs: each HTML page is rendered using an independent thread
that retrieves from the network the page contents in HTML!/XML and displays it.
The resources allocated to a process are shared between the different threads, and at
least one thread should have a main calling function.

We can characterize the threads as follows:

e Threads of a same process share the same memory area, and can therefore access
both the data area but also the code area in memory. It is therefore easy to access
data between the threads of a same process, but it can also raise some difficulties
in case of simultaneous access to the memory: In the worst case, it yields a system
crash! A theoretical abstraction of this model is the so-called Parallel Random-
Access Machine (or PRAM). On the PRAM model, we can classify the various
conflicts that can happen when reading or writing simultaneously on the local
memory. We have the Exclusive Read Exclusive Write sub-model (EREW), the
Concurrent Read Exclusive Write (CREW) and the Concurrent Read Concurrent
Write models.

e This multi-threading programming model is very well suited to multi-core proces-
sors, and allows applications to be ran faster (for example, for encoding a MPEG4
video or a MP3 music file) or using non-blocking applications (like a web multi-tab
browser with a mail application).

e Processes are different from threads because they have their own non-overlapping
memory area. Therefore, communications between processes have to be done
careful, in particular using the MPI standard.

We can also distinguish the parallel programming paradigm Single Program
Multiple Data (SPMD) from the paradigm called Multiple Program Multiple Data
(MPMD). Finally, let us notice that we can run several processes either on a same
processor (in parallel when the processor is multi-core) or on a set of processors inter-
connected by a network. We can also program processes to use several multi-core
processors (in that case, using both the MPI and OpenMP standards).

2.3 Global Communications Between Processes

By executing a MPI program on a cluster of machines, we launch a set of processes,
and we have for each process traditional local computations (like ordinary sequential
programs) but also:

e some data transfers: for example, some data broadcasted to all other processes
using a message,

e some synchronization barriers where all processes are required to wait for each
other before proceeding,

! Hypertext Markup Language.

24 2 Introduction to MPI: The Message Passing Interface

(+1234)=(+ (+12) (+34)=(+ 3 7)=(10)
10
3/ + \7
/N /N
1 2 3 4)

Fig. 2.1 Example of a global reduce computation: calculating the global cumulative sum of the
local values of a process variable. We illustrate here the reduction tree performed when invoking
the reduce primitive

(+

e global computations: for example, a reduce operation that calculates, say, the sum
or the minimum of a distributed variable x belonging to all the processes (with a
local value stored on the local memory of each process). Figure 2.1 illustrates a
reduce cumulative sum operation. The global computation depends on the under-
lying topology of the interconnected cluster machines.

Global communication primitives are carried out on all processes belonging to
the same group of communication. By default, once MPI got initialized, all processes
belong to the same group of communication called MPT_COMM_WORLD.

2.3.1 Four Basic MPI Primitives: Broadcast, Gather, Reduce,
and Total Exchange

The MPI broadcasting primitive, MPT_Bcast, sends a message from a root process
(the calling process of the communication group) to all other processes (belonging
to the communication group). Conversely, the reduce operation aggregates all corre-
sponding values of a variable into a single value that is returned to the calling process.
When a different personalized message is send to each other process, we get a scatter
operation called in MPI by MPI_Scatter.

Aggregating primitives can either be for communication of for computing glob-
ally: gather is the converse of the scatter operation where a calling process receives
from all other processes a personalized message. In MPI, MPT_Reduce allows one
to perform a global calculation by aggregating (reducing) the values of a variable
using a commutative binary operator.> Typical such examples are the cumulative
sum (MPI_SUM) or the cumulative product (MPI_PROD), etc. A list of such binary
operators used in the reduce primitives is given in Table 2.1. Those four basic MPI
primitives are illustrated in Fig.2.2. Last but not least, we can also call a global

2An example of binary operator that is not commutative is the division since p/q # q/p.

2.3 Global Communications Between Processes

Table 2.1 Global
calculation: predefined
(commutative) binary
operators for MPI reduce
operations

M: Message

25

MPI name Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bit-wise and
MPI_LOR Logical or
MPI_BOR Bit-wise or
MPI_LXOR Logical xor
MPI_BXOR Bit-wise xor

MPI_MAXLOC

Max value and location

MPI_MINLOC

Min value and location

one-to-all
broadcast

personalized
one-to-all

scatter

all-to-one
gather

global computation

reduce

My Ma\M;

My My)M,

Fig. 2.2 Four basic collective communication primitives: broadcast (one to all), scatter (personal-
ized broadcast or personalized one-to-all communication), gather (the inverse of a scatter primitive,
or personalized all-to-one communication) and reduce (a global collective computation)

26 2 Introduction to MPI: The Message Passing Interface

all-to-all communication primitive (MPTI_Alltoall, also called fotal exchange)
where each process sends a personalized message to all other processes.

2.3.2 Blocking Versus Non-blocking and Synchronous
Versus Asynchronous Communications

MPI has several send modes depending on whether data are buffered or not and
whether synchronization is required or not. First, let us start by denoting by send
and receive the two basic communication primitives. We describe the syntax and
semantic of these two primitives as follows:

e send(&data, n, Pdest): Send an array of n data starting at memory
address &data to process Pdest

e receive(&data, n, Psrc): Receive n data from process Psrc and store
them in an array which starts a local memory address &data

Now, let us examine what happens in this example below:

Process PO Process P1
asad2; receive(ta, 1, PO)
receive(&a, 1, ;
send(&a, 1, P1);
0 cout << a << endl;
a=0;

Blocking communications (not buffered) yield a waiting time situation: that is,
a idling time. Indeed, the sending process and the receiving process need to wait
mutually for each other: it is the communication mode commonly termed hand-
shaking. This mode allows one to perform synchronous communications. Figure 2.3
illustrates these synchronous communications by hand-shaking and indicates the
idling periods.

The C program below gives an elementary example of blocking communication
in MPI (using the C binding of the OpenMPI vendor implementation of MPI):

’ WWW source code: MPIBlockingCommunication. cpp ‘

// filename: MPIBlockingCommunication.cpp
#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#include <math.h>

int main (argc, argv)
int argc;

char *argvl|[];

{

int myid, numprocs;

2.3 Global Communications Between Processes 27

int tag, source,destination, count;
int buffer;
MPI_Status status;

MPI_Init (&argc, &argv) ;
MPI_Comm_size (MPI_COMM_WORLD , &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD , &myid) ;
tag=2312; /* any integer to tag messages */
source=0;
destination=1;
count=1;
if (myid == source) {

buffer=2015;

MPI_Send (&buffer, count , MPI_INT, destination, tag

,MPI_COMM_WORLD) ;

printf ("processor %d received %d \n", myid,
buffer)
}
if (myid == destination) {

MPI_Recv (&buffer , count ,MPI_INT, source, tag,
MPI_COMM_WORLD, &status) ;

printf ("processor %d received %d \n",myid,
buffer) ;

}
MPI_Finalize () ;

}

Clearly, for blocking communications, one seeks to minimize the overall idling
time. We shall see later on how to perform this optimization using a load-balancing
technique to balance fairly the local computations among the processes.

We report the syntax and describe the arguments of the send® primitive in MPI:

e Syntax using the C binding:

#include <mpi.h>
int MPI_Send (wvoid *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

e Syntax in C++ (Deprecated. That is, it is not regularly updated since MPI-2 and
we do not recommend using it):
#include <mpi.h>

void Comm::Send (const wvoid* buf, int count, const
Datatype& datatype, int dest, int tag) const

The tag argument in send assigns an integer to a message (its label) so that
processes can specify which type of message to wait for. Tags are useful in practice to
filter communication operations, and ensures for example that messages sent/received
are pairwise matching using blocking communications.

The C data types in MPI are summarized in Table 2.2.

3See the manual online: https://www.open-mpi.org/doc/v1.4/man3/MPI_Send.3.php.

https://www.open-mpi.org/doc/v1.4/man3/MPI_Send.3.php

28

Fig. 2.3 Blocking
communications by
hand-shaking: a sending
process waits for the “OK”
of the receiver and thus
provoke a waiting situation,
b one seeks to minimize this
idling time, and ¢ case where
it is the receiving process
that needs to wait

2 Introduction to MPI: The Message Passing Interface

(a) Send process Receive process

Message passing

send request

waiting, idle time

OK acknowledgement

O O
\ \

(b) time
Send process Receive process

Message passing
send request
. OK acknowledgement
no idle time |

time
(0)

Send process Receive process

Message passing I
send request g
OK acknowledgement

time

2.3.3 Deadlocks from Blocking Communications

Using blocking communications allows one to properly match “send queries” with
“receive queries”, but can unfortunately also yields deadlocks.*

“In that case, either a time-out signal can be emitted externally to kill all the processes, or we
need to manually kill the processes using their process identity number using Shell command line

instructions.

2.3 Global Communications Between Processes 29

Table 2.2 Basic data types in MPI type

Corresponding type in the C
MPI when using the C P gup

s language
language binding MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float

MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI_PACKED

Letus consider this toy example to understand whether there is a deadlock situation
occurring or not:

Process PO Process P1
send(&a, 1, P1); send(&a, 1, P0O);
receive(&b, 1, P1); receive(&b, 1, PO);

Process PO send a message and then waits the green light “OK for sending” of
receiver process P 1, but the send query of P1 also waits for the green light “OK for
sending” of process PO0. That is typically a deadlock situation. In this toy example,
we have highlighted the deadlock problem when using blocking communication
primitives. However in practice, it is not so easy to track them as process programs
can take various execution paths.

In practice, in MPI, each send/receive operation concerns a group of communi-
cation and has a tag attribute (an integer). From an algorithmic viewpoint, blocking
communications are a highly desirable feature to ensure consistency (or the seman-
tic) of programs (for example, to avoid that messages arrive in wrong orders) but
they can yield difficulties to detect deadlocks.

In order to remove (or at least minimize!) these deadlock situations, we can preal-
locate to each process a dedicated memory space for buffering data: the data buffer
(bearing the acronym DB). We then send data in two steps:

e First, the send process sends a message on the data buffer, and
e Second, the receive process copies the data buffer on its local memory area indi-
cated by the address &data.

This buffered communication can either be implemented by hardware mecha-
nisms or by appropriate software. However, there still remains potential deadlocks
when the data buffers become full (raising a “buffer overflow” exception). Even if

30 2 Introduction to MPI: The Message Passing Interface

we correctly manage the send primitives, there can still be remaining deadlocks,
even with buffered communications, because of the blocking receive primitive. This
scenario is illustrated as follows:

Process PO Process P1
receive(&a, 1, P1); receive(&a, 1, PO);
send (&b, 1, P1); send (&b, 1, P0O);

Each process waits for a message before being able to send its message! Again,
this is a deadlock state! In summary, blocking communications are very useful when
we consider global communication like broadcasting in order to ensure the correct
arrival order of messages, but one has to take care of potential deadlocks when
implementing these communication algorithms.

A solution to avoid deadlocks is to consider both the send and receive primi-
tives being non-blocking. These non-blocking communication routines (not buffered)
are denoted by Isend and Ireceive in MPI: There are asynchronous communi-
cations. In that case, the send process posts a message “Send authorization request”
(a pending message) and continues the execution of its program. When the receiver
process posts a “OK for sending” approval, data transfers are initiated. All these
mechanics are internally managed using signals of the operating system. When the
data transfer is completed, a check status let indicate whether processes can pro-
ceed to read/write data safely. The C program below illustrates such a non-blocking
communication using the C binding of OpenMPI. Let us notice that the primitive
MPI_Wait (&request, &status); waits until the transfer is completed (or
interrupted) and indicates whether that transfer has been successful or not, using
a state variable called status.

’ WWW source code: MPINonBlockingCommunication. cpp ‘

// filename: MPINonBlockingCommunication.cpp
#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#include <math.h>

int main (argc, argv)
int argc;
char *argv([];
{
int myid, numprocs;
int tag, source,destination, count;
int buffer;
MPI_Status status;
MPI_Request request;

MPI_Init (&argc, &argv) ;

MPI_Comm_size (MPI_COMM_WORLD , &numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD , &myid) ;
tag=2312;

2.3 Global Communications Between Processes 31

source=0;
destination=1;

count=1;
request=MPI_REQUEST_NULL;
if (myid == source) {

buffer=2015;
MPI_Isend (&buffer, count,MPI_INT,6 destination,
tag, MPI_COMM_WORLD ,6 &request) ;

}
if (myid == destination) {
MPI_TIrecv (&buffer, count,MPI_INT, source, tag,
MPI_COMM_WORLD , &request) ;
}
MPI_Wait (&request ,&status) ;

(
if (myid == source) {
(

printf ("processor %d sent %d\n",myid, buffer);
}
if (myid == destination) {
printf ("processor %d received %d\n",myid,
buffer) ;

}
MPI_Finalize () ;

}

We summarize the calling syntax in the C binding of the non-blocking primitives
Isendand Irecv:
int MPI_Isend(void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *req)

int MPI_Irecv(void *buf, int count, MPI_Datatype
datatype, int src, int tag, MPI_Comm comm,
MPI_Request *req)

The structure MPI_Request is often used in programs: it returns *flag=1
when the operation *req has completed, and 0 otherwise.

int MPI_Test (MPI_Request *req, int *flag,
MPI_Status *status)

The primitive MPI_Wait waits until the operation indicated by *req has been
completed

int MPI_Wait (MPI_Request *req, MPI_Status *status)

We summarize the various communication protocols (blocking/non-blocking send
with blocking/non-blocking receive) in Table 2.3.

32 2 Introduction to MPI: The Message Passing Interface

Table 2.3 Comparisons of the various send/receive operation protocols

Blocking operation Non-blocking operation
Bufferized send completes after data have send completes after having
been copied to the data buffer initialized DMA (Direct Memory

Access) transfer to the data buffer.
The operation is not necessarily
completed after it returns

Not-bufferized Blocking send until it meets a To define
corresponding receive
Meaning Semantic of send and receive | Semantic must be explicitly
by matching operations specified by the programmer that

needs to check the operation status

The program listings so far highlighted eight common procedures of MPI (among
arich set of MPI instructions):

MPI_TInit Initialize the MPI library
MPI_Finalize Terminate MPI
MPI_Comm_size Return the number of processes
MPI_Comm_rank Rank of the calling process

MPI_Send send a message (blocking)
MPI_Recv receive message (blocking)
MPI_TIsend send a message (non-blocking)
MPI_TIrecv receive message (non-blocking)

All these procedures return MPT_ SUCCESS when they are completed with suc-
cess, or otherwise an error code depending on the problems. Data types and constants
are prefixed with MPT_ (we invite the reader to explore the header file mpi . h for
more information).

2.3.4 Concurrency: Local Computations Can Overlap
with Communications

It is usual to assume that the processors (or Processing Elements, PEs) can per-
form several tasks at the same time: for example, a typical scenario is to use non-
blocking communications (MPI_IRecv and MPI_TISend) at the same time they
perform some local computations. Thus we require that those three operations are
not interferring with each other. In one stage, we can therefore not send the result
of a calculation and we can not send what has been concurrently received (meaning

2.3 Global Communications Between Processes 33

forwarding). In parallel algorithmic, we denote by the double vertical bar || these
concurrent operations:

IRecv||ISend||Local_Computation

2.3.5 Unidirectional Versus Bidirectional Communications

We distinguish between one-way communication and two-way communication as
follows: in one-way communication, we authorize communications over communi-
cation channels in one direction only: that is, either we send a message or we receive
a message (MPI_Send/MPI_Recv) but not both at the same time. In a two-way
communication setting, we can communicate using both directions: in MPI, this can
be done by calling the procedure MPI_Sendrecv.’

2.3.6 Global Computations in MPI: Reduce and Parallel
Prefix (Scan)

In MPI, one can perform global computations like the cumulative sum V = Zf:ol v;

where v; is a local variable stored in the memory of process P; (or the cumulative
product V =[]/ v;). The result of this global computation V is then available
in the local memory of the process that has called this reduce primitive: the calling
process, also called the root process. We describe below the usage of the reduce®

primitive using the C binding of OpenMPI:

##include <mpi.h>

int MPI_Reduce (// Reduce routine

void* sendBuffer, // Address of local val
void* recvBuffer, // Place to receive into

int count, // No. of elements

MPI_Datatype datatype, // Type of each element
MPI_OP op, // MPI operator

int root, // Process to get result

MPI_Comm comm // MPI communicator

)

Reduction operations are predefined and can be selected using one of the keywords
among this list (see also Table 2.1).

Shttps://www.open-mpi.org/doc/v1.8/man3/MPI_Sendrecv.3.php.
6See manual online at https://www.open-mpi.org/doc/v1.5/man3/MPI_Reduce.3.php.

https://www.open-mpi.org/doc/v1.8/man3/MPI_Sendrecv.3.php
https://www.open-mpi.org/doc/v1.5/man3/MPI_Reduce.3.php

34 2 Introduction to MPI: The Message Passing Interface

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum)’

MPI_PROD product]

MPI_LAND logic AND

MPI_BAND bitwise AND

MPI_LOR logic OR

MPI_BOR bitwise OR

MPI_LXOR logic XOR

MPI_BXOR bitwise COR

MPI_MAXLOC maximal value and corresponding index of the maximal element
MPI_MINLOC minimal value and corresponding index of the minimal element

In MPI, one can also build its own data type and define the associative and com-
mutative binary operator for reduction.

A second kind of global computation are parallel prefix also called scan. A
scan operation calculates all the partial reductions on the data stored locally on
the processes.

Syntax in MPI is the following:

int MPI_Scan(void *sendbuf,void *recvbuf, int count,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm)

Calling this procedure allows one to perform a prefix reduction on the data
located in sendbu f on each process with the result available in the memory address
recvbuf. Figure?2.4 illustrates graphically the difference between these two global
computation primitives: reduce and scan.

MPI_Scan(vals, cumsum, 4, MPI_INT, MPI_SUM,
MPI_COMM_WORLD)

Py a a+b+c+d

P b reduce b

Py c c

Py d d

Py ap | bo | co ag bo o

P1 ay bl &1 m ay + ay b(J+b1 co+C
P, a2 by C2 ag + ay + as bo + by + by Co+C+ Co

Fig. 2.4 Visualizing a reduce operation and a parallel prefix (or scan) operation

2.3 Global Communications Between Processes 35

We described by syntax of reduce and scan using the C binding because the
C++ binding is not any longer updated since MPI-2. In practice, we often program
using the modern oriented-object C++ language and call the MPI primitives using
the C interface. Recall that the C language [1] is a precursor of C++ [2] that is not
an oriented-object language, and manipulates instead data structures defined by the
keyword struct.

These global computations are often implemented internally using spanning trees
of the underlying topology of the interconnection network.

2.3.7 Defining Communication Groups with Communicators

In MPI, communicators allow one to group processes into various groups of com-
munications. Each process is included in a communication and is indexed by its rank
inside this communication group. By default, MPT__COMM_WORLD includes all the P
processes with the rank being an integer ranging from O to P — 1. To get the number
of processes inside its communication group or its rank inside the communication, we
use the following primitives in MPI: int MPI_Comm_size (MPI_Comm comm,
int *size) and int MPI_Comm_rank (MPI_Comm comm, int *size).

For example, we create a new communicator by removing the first process as
follows:

’ WWW source code: MPICommunicatorRemoveFirstProcess.cpp ‘

// filename: MPICommunicatorRemoveFirstProcess.cpp
#include <mpi.h>

int main(int argc, char *argvl[])
{
MPI_Comm comm_world, comm_worker;
MPI_Group group_world, group_worker;
comm_world = MPI_COMM_WORLD;

MPI_Comm_group (comm_world, &group_world) ;
MPI_Group_excl (group_world, 1, 0, &group_worker)

7

/* process 0 1is removed from the communication
group */

MPI_Comm_create (comm_world, group_worker, &
comm_worker) ;

36 2 Introduction to MPI: The Message Passing Interface

In this second listing, we illustrate how to use communicators:

WWW source code: MPICommunicatorSplitProcess.cpp

// filename: MPICommunicatorSplitProcess.cpp
#include <mpi.h>

#include <stdio.h>

#define NPROCS 38

int main (int argc, char *argv][])

{
int *ranks1[4]1={0,1,2,3}, ranks2([4]={4,5,6,7};

MPI_Group orig_group, new_group;
MPI_Comm new_comm

MPI_Init (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
sendbuf = rank;

// Retrieve the intial group
MPI_Comm_group (MPI_COMM_WORLD, &orig_group) ;

if (rank < NPROCS/2)
MPI_Group_incl (orig_group, NPROCS/2, ranksl,
&new_group) ;
else
MPI_Group_incl (orig_group, NPROCS/2, ranks2, &
new_group) ;

// create new communicator
MPI_Comm_create (MPI_COMM_WORLD, new_group, &new_commnm

) ;

// global computation primitive

MPI_Allreduce (&sendbuf, &recvbuf, 1, MPI_INT,
MPI_SUM, new_comm) ;

MPI_Group_rank (new_group, &new_rank) ;

printf ("rank= %d newrank= %d recvbuf= %d\n", rank,
newrank, recvbuf);

MPI_Finalize () ;

}

MPI_Comm_create is acollective operation. All processes of the former com-
munication group need to call it, even those who do not belong to the new commu-
nication group.

2.4 Synchronization Barriers: Meeting Points of Processes 37

2.4 Synchronization Barriers: Meeting Points of Processes

In the coarse-grained parallelism mode, processes execute large chunks of compu-
tations independently from each other. Then they wait for each other at a synchro-
nization barrier (see Fig.2.5, MPI_Barrier in MPI), perform some send/receive
messages, and proceed their program execution.

2.4.1 A Synchronization Example in MPI: Measuring
the Execution Time

For example, let us illustrate a way to measure the parallel time of a MPI program
with a synchronization barrier. We shall use the procedure MPI_Wt ime to measure
time in MPI. Consider this master/slave code:

WWW source code: MPISynchronizeTime.cpp

// filename: MPISynchronizeTime.cpp
double start, end;

MPI_TInit (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

Fig. 2.5 Conceptual
illustration of a
synchronization barrier:
processes wait for each other
at a synchronization barrier
before carrying on the
program execution

Synchronization barrier

Synchronization barrier

38 2 Introduction to MPI: The Message Passing Interface

MPI_Barrier (MPI_COMM_WORLD); /* IMPORTANT */
start = MPI_Wtime () ;

/* some local computations here */
LocalComputation () ;

MPI_Barrier (MPI_COMM_WORLD); /* IMPORTANT */
end = MPI_Wtime (); /* measure the worst-case time of
a process */

MPI_Finalize () ;

if (rank == 0)
{ /* use time on master node */
cout << end-start <<endl; // here we use C++ syntax

}

We can also use a MPI_Reduce () procedure to compute the minimum, max-
imum, and overall sum of all the process times. But this eventually requires to add
an extra step for perform the global computation with a reduce operation.

2.4.2 The Bulk Synchronous Parallel (BSP) Model

One of the high-level parallel programming model is called the Bulk Synchronous
Parallel (or BSP for short). This abstract model has been conceived by Leslie G.
Valiant (Turing award, 2010) and facilitates the design of parallel algorithms using
three fundamental steps that form a “super-step”:

1. concurrent computation step: processes locally and asynchronously compute, and
those local computation can overlap with communications,

2. communication step: processes exchange data between themselves,

3. synchronization barrier step: when a process reaches a synchronization barrier,
it waits for all the other processes to reach this barrier before proceeding another
super-step.

A parallel algorithm on the BSP model is a sequence of super-steps. A software
library, BSPonMPT,’ allows one to use this programming model easily with MPIL.

http:/bsponmpi.sourceforge.net/.

http://bsponmpi.sourceforge.net/

2.5 Getting Started with the MPI: Using OpenMPI 39

2.5 Getting Started with the MPI: Using OpenMPI

We describe several ways to use the OpenMPI implementation of the MPI standard
using either the C, C++, or Boost bindings. There is also a convenient Python binding8
that is touched upon.

2.5.1 The “Hello World” Program with MPI C++

The traditional “Hello program” reflects the minimal structure of a program display-
ing a simple message.

WWW source code: MPTHelloWorld. cpp

// filename: MPIHelloWorld.cpp
include <iostream>
using namespace std;
include "mpi.h"
int main (int argc, char *argv][])
{

int id, p, name_len;

char processor_name [MPI_MAX_PROCESSOR_NAME];
// Initialize MPI.

MPI::Init (argc, argv) ;
// Get the number of processes.

p = MPI::COMM_WORLD.Get_size ();
// Get the individual process ID.

id = MPI::COMM_WORLD.Get_rank ();

MPI_Get_processor_name (processor_name, &name_1len) ;

// Print off a hello world message

cout << " Processor " << processor_name<<" ID="<<

id << " Welcome to MPI!‘'\n";

// Terminate MPI.

MPI::Finalize ();
return O;

}
To compile this C++ source code, we type in the terminal:
mpic++ welcomeMPI.cpp -0 welcomeMPI

When the -o option is not set, the compiler will write the byte code in a default
file called: a . out. Once compile, we execute this program, here on machine named
machinempi:

>$ mpirun -np 4 welcomeMPI
Processor machinempi ID=3 Welcome MPI!’

8http://mpidpy.scipy.org/docs/usrman/.

http://mpi4py.scipy.org/docs/usrman/

40 2 Introduction to MPI: The Message Passing Interface

Processor machinempi ID=0 Welcome MPI!’
Processor machinempi ID=1 Welcome MPI!’
Processor machinempi ID=2 Welcome MPI!’

Let us note that on the console, the messages are displayed in the order of the
execution time of the cout orders. Thus if we launch again this program, we order of
messages on the console may be different. Therefore let us emphasize that when we
invoke the mpirun command, we create P processes that all execute the same com-
piled code. Each process can take different branches of the program by identifying
themselves using their rank.

We can use two machines to run the program as follows:

>$ mpirun -np 5 -host machineMPI1l,machineMPI2 welcomeMPI
Processor machineMPI2 1ID=1 Welcome MPI!’
Processor machineMPI2 1ID=3 Welcome MPI!’
Processor machineMPI1 ID=0 Welcome MPI!"’
Processor machineMPI1 ID=2 Welcome MPI!’
Processor machineMPI1 1ID=4 Welcome MPI!’

The mpirun execution command is a symbolic link to the orterun command
in OpenMPI. We can list the various libraries of MPI as follows:

>mpic++ —--showme:libs

mpi_cxx mpi open-rte open-pal dl nsl util m dl
And we can add a new library as follows:

export LIBS=${LIBS}:/usr/local/boost-1.39.0/include/boost-1_39
And then compile this command line in the shell:

mpic++ -c¢ t.cpp -ISLIBS

As usual, it is better to set the shell configuration file properly by editing the
.bashrc. After having done your editing, you need to re-read the configuration file
by typing this built-in-shell command:

source ~/.bashrc

You are now ready to use simultaneously a large number of machines. But please
keep in mind that you have to be kind when using a large number of resources:
everybody shall uses the shared resource fairly!

In the Appendix B, we describe the SLURM task scheduler to launch MPI jobs
on a cluster of machines.

2.5 Getting Started with the MPI: Using OpenMPI 41

2.5.2 Programming MPI with the C Binding

The toy program below describes a way to define a master-slave program:

WWW source code: MPICBindingExample.c

/* filename: MPICBindingExample.c */
int main (int argc, char **argv)
{
int myrank, size;
MPI_TInit (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (!myrank)
master () ;
else
slave ()
MPI_Finalize () ;
return (1) ;

}

void master ()
{printf ("I am the master program\n") ;}

void slave ()
{printf ("I am the slave program\n") ;}

Note that the MPI interface that we have used here is fairly different from our
first program “Hello World”. Indeed, we use the C binding of the MPI here. The C
binding is the most commonly used binding of MPI and is frequently updated. It
offers all functions of the MPI standard. The C++ binding is not anymore supported
and offers less functions. Therefore we recommend to use the C binding, even in
a C++ program (C calling style of MPI procedures inside a C++ object-oriented
program). This explains why in our codes, we have C calling function style with
cout print order to the console!

2.5.3 Using MPI with C++ Boost

Boost’ is a C++ library that is very useful for dealing with matrices and graphs, etc.
Interesting, this library also offers its own style to use MPI programs. Here is a small
Boost-MPI program to showcase the library:

“http://www.boost.org/.

http://www.boost.org/

42 2 Introduction to MPI: The Message Passing Interface

WWW source code: MPIBoostBindingExample. cpp

// filename: MPIBoostBindingExample.cpp
#include <boost/mpi/environment.hpp>
#include <boost/mpi/communicator.hpp>
#include <iostream>

namespace mpi = boost::mpi;

int main ()

{
mpi::environment env;
mpi::communicator world;

std::cout << "I am process " << world.rank () << "
on " << world.size ()
<< "." << std::endl;

return O0;

}
If you are using Unix, you can compile this program as follows:
/usr/local/openmpi—1.8.3/bin/mpic++ —I/usr/local/boost—1.56.0/include/

—L/usr/local/boost—1.56.0/1ib/ —Iboost_mpi —lboost_serialization myprogram.cpp
—O0 myprogram

2.6 Using MPI with OpenMP

OpenMP'? is yet another Application Programming Interface for parallel program-
ming with shared memory. OpenMP is a cross-platform standard that offers bindings
in the C/C++/Fortran imperative languages among others. OpenMP is typically used
when one wants to use multi-core processors. Here is a “Hello World” program using
both the MPI and OpenMP APIs:

WWW source code: MPITOpenMPExample. cpp

// filename: MPIOpenMPExample.cpp

#include <mpi.h>

##include <omp.h>

#include <stdio.h>

int main (int nargs, char** args)

{

int rank, nprocs, thread_id, nthreads;

int name_len;

char processor_name [MPI_MAX_PROCESSOR_NAME];

MPI_TInit (&nargs, &args) ;

1Ohttp://openmp.org/wp!/.

http://openmp.org/wp/

2.6 Using MPI with OpenMP 43

MPI_Comm_size (MPI_COMM_WORLD, &nprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Get_processor_name (processor_name, &name_len) ;

#pragma omp parallel private (thread_id, nthreads)

{

thread_id = omp_get_thread_num () ;

nthreads = omp_get_num_threads () ;

printf ("Thread number %d (on %d) for the MPI process
number %d (on %d) [%s]l\n",

thread_id, nthreads, rank, nprocs, processor_name) ;

}

MPI_Finalize () ;

return O;

}

We use the option - fopenmp of the mpic++ compiler as follows:
mpic++ -fopenmp testmpiliopenmp.cpp -0 testmp.exe

Then we execute this program at the command line as follows:

mpirun -np 2 -host royce,simca testmp.exe

[royce ~]$ mpirun -np 2 -host royce,simca dmp.exe

Thread number 0 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 1 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 5 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 4 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 3 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 7 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 0 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 1 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 5 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 4 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 7 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 2 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 3 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 6 (on 8) for the MPI process number 0 (on 2) [royce.polytechnique.fr]
Thread number 2 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]
Thread number 6 (on 8) for the MPI process number 1 (on 2) [simca.polytechnique.fr]

It can be seen that the two host machines have 8 cores each. We observe that
the arrival printing order on the console depends on many system factors. Running
another time the program will likely yield a different arrival order. Instead of naming
explicitly the host machines, we can also use a resource scheduler like SLURM!!
that will allocate automatically all necessary resources of a cluster to MPI programs
(see Appendix B).

2.6.1 Programming MPI with the Python Binding

Python'? has become widely popular the last decade as a fast prototyping language.
The Python binding is available from the following URL: http://mpidpy.scipy.org/
docs/usrman/

https://computing.llnl.gov/linux/slurm/.
Phttps://www.python.org/.

http://mpi4py.scipy.org/docs/usrman/
http://mpi4py.scipy.org/docs/usrman/
https://computing.llnl.gov/linux/slurm/
https://www.python.org/

44 2 Introduction to MPI: The Message Passing Interface

WWW source code: MPTHelloWorld.py

#!/usr/bin/env python

MPI Hello World example

from mpidpy import MPI
import sys

size = MPI.COMM_WORLD.Get_size ()
rank = MPI.COMM_WORLD.Get_rank ()
name MPI.Get_processor_name ()

sys.stdout.write (
"Hello, World! I am process %d of %d on %s.\n"
% (rank, size, name))

mpirun -np 5 python26 hw.py

2.7 Main Primitives in MPI

We recall the main collective communication primitives that are global operations
performed on a communicator (group of machines):

e broadcast (one-to-all) and reduce (all-to-one, that can be interpreted as the reverse
operation of a broadcast primitive),

e scatter or personalized broadcast that sends different messages to all processes,

e gather or all-to-one that assembles individual messages from all processes to the
calling process (inverse operation of a scatter primitive)

e global computational like reduce or scan (as known as parallel prefix),

e total communication, all-to-all, also called total exchange (personalized messages
for all processes),

e ctc.

2.7.1 MPI Syntax for Broadcast, Scatter, Gather,
Reduce and Allreduce

e broadcast: MPT_Bcast!?

int MPI_Bcast (void *buffer, int count,

Bhttps://www.open-mpi.org/doc/v1.5/man3/MPI_Bcast.3.php.

https://www.open-mpi.org/doc/v1.5/man3/MPI_Bcast.3.php

2.7 Main Primitives in MPI 45

MPI_Datatype datatype,
int root, MPI_Comm comm)

e scatter: MPI_Scat ter!

int MPI_Scatter (void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

e gather: MP I_Gather?

int MPI_Gather (void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)
e reduce: MPI_Reduce!®

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

e Allreduce: MPI_2Allreduce!’

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Those operations are visually explained in Fig.2.6.

2.7.2 Other Miscellaneous MPI Primitives

e The prefix sum primitive considers a binary associative operator @ like +, x, max,
min, and computes for 0 < k < P — 1 the “sum” stored on Py:

Sk=My®M, & --- D M,
The P messages { M} }, are assumed to be stored on the local memory of process Py.
e all-to-all reduce is defined according to a binary associative operation & like

+, X, max, min, and outputs:

Mr = @,’P:_()l Mi,r-

4https://www.open-mpi.org/doc/v1.5/man3/MPI_Scatter.3.php.
https://www.open-mpi.org/doc/v1.5/man3/MPI_Gather.3.php.
I6https://www.open-mpi.org/doc/v1.5/man3/MPI_Reduce.3.php.
17https://www.open-mpi.org/doc/v1.5/man3/MPI_Allreduce.3.php.

https://www.open-mpi.org/doc/v1.5/man3/MPI_Scatter.3.php
https://www.open-mpi.org/doc/v1.5/man3/MPI_Gather.3.php
https://www.open-mpi.org/doc/v1.5/man3/MPI_Reduce.3.php
https://www.open-mpi.org/doc/v1.5/man3/MPI_Allreduce.3.php

46 2 Introduction to MPI: The Message Passing Interface

a b
@ ErTT i1 ™ o AT

P EEED m VT T] B EEED B[[1]
one to all

r [(TTT] MTT rn[TTT]

Junnn , @" OO

r [a]s]c]p] : O]

n (11 - BI11] »ElI]
r (T o R i

Py .-. .-.
P sl T 1] (ol T T]
LI T T (ol T 1]

Fig. 2.6 Standard communication primitives and global computations in MPI: a broadcast,
b scatter, ¢ gather, d reduce and e allreduce

04

JEH HH B

3

>
-]
H
H
L]
H
H
L]

We have P2 messages M, ; for 0 <r,k < P — 1, and messages M, ; are stored
locally on P,.

e Transposition, is a personalized all-to-all primitive that carries out a transposition
of messages on the processes as follows:

)

o PP P; P P P B
Moz Mz Mys Ms; Mso M3y Msz Msjs
Mor, Mip My Mizp — Myog My Mry M3
Moy My My Ms, Mo My M, M3
Moo Mo Mo Msp Moo Moy Mor Mos

(&)

We have P2 messages M, , with P messages M, ; stored on P,, and after the trans-
position, we have the M, ; stored on P for all 0 < k < P — 1. This transposition
primitive is very useful for inverting matrices partitioned in blocks on the grid or
torus topology, for example.

e The circular shift operates a global shift of messages as follows:

MO Ml M2 M3—)M3 MO Ml Mz

2.7 Main Primitives in MPI 47

The P messages My are stored locally and the message M —1ymodp is stored at Py
in the output.

2.8 Communications on the Ring Topology with MPI

In Chap.5, we shall consider distributed algorithms for the matrix multiplication
on the ring and torus topologies. Here, we illustrate a short MPI program using the
blocking communication primitives send and receive to perform a broadcast
operation:

WWW source code: MPTRingBroadcast . cpp

// filename: MPIRingBroadcast.cpp

#include <mpi.h>

int main (int argc, char *argv([]) {
int rank, value, size;

MPI_Status status;

MPI_TInit (&argc, &argv) ;

MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &size);

do {

if (rank == 0) {scanf("%d", &value);

/* Master node sends out the value */

MPI_Send(&value, 1, MPI_INT, rank + 1, 0,
MPI_COMM_WORLD) ;

}

else {

/* Slave nodes block on receive the send on the
value */

MPI_Recv (&value, 1, MPI_INT, rank - 1, 0,
MPI_COMM_WORLD, &status) ;
if (rank < size - 1) {

MPI_Send(&value, 1, MPI_INT, rank + 1, 0,
MPI_COMM_WORLD) ;

}

printf ("process %d got %d\n", rank, wvalue);

} while (value >= 0);

MPI_Finalize () ;
return O0;

http://dx.doi.org/10.1007/978-3-319-21903-5_5

48 2 Introduction to MPI: The Message Passing Interface

2.9 Examples of MPI Programs with Their Speed-Up
Analysis

Let us now present different types of parallel implementations depending on the type
of data transfer and on the local computations, and let us investigate the speed-up
obtained on several problems. We recall that the speed-up is defined as follows:

t; = time for one process

Sp =

t, = time for p processes

We aim at reaching a linear speed-up in O(P), where P denotes the number
of processes (each process ran to its own processor). In practice, one has to take
care when accessing data (communication time, the different hierarchical levels of
cache memories, etc.). In particular, we need to partition data when the data size are
too big to hold on a single local memory of a processor (horizontal or vertical data
partitioning).

Often, one can obtain a nice parallelization whenever the considered problem is
said to be decomposable. For example, when playing chess, we need to find the best
move given a configuration of the chessboard. Although the space of chess configu-
ration is combinatorially very large, it is nevertheless finite, in O (1). Thus in theory,
one could explore all potential moves: at each move, we partition the space called
the configuration space. The communication stages are for partitioning the problem
into sub-problems and for combining the solutions of the sub-problems (reduce).
Therefore, one expect to obtain a linear speed-up. In practice, the chess performance
of a parallel software depends on the depth of the search tree it uses for exploring the
configuration space. High Performance Computing has been instrumental in design-
ing such a powerful chess software that won against Human: in 1997, Kasparov lost
achess play to the computer named Deeper Blue using 12 GFLOPS. Nowadays, peo-
ple are focusing on the go game that offers a bigger combinatorial space. Advances
in go program performance also implies progress in many other technical fields.

However, not all problems can be easily or well parallelized. For example, prob-
lems using irregular and dynamic domains like when simulating snow melting (that
requires to dynamically and locally re-mesh domains, etc.). In that case, in order to
obtain a good speed-up, we require to explicitly manage the load balancing among
the processes. Splitting dynamically data among processes cost a lot since it requires
to transfer data, and the overall speed-up is difficult to predict, because it depends
on the semantic of the problem on the considered input data-sets, etc.

Let us know consider some very simple illustrative MPI programs.

2.9 Examples of MPI Programs with Their Speed-Up Analysis 49

2.9.1 The Matrix—Vector Product in MPI

The chapter on linear algebra (Chap. 5) will concentrate on distributed algorithms on
the oriented ring and torus topologies.

WWW source code: MPIMatrixVectorMultiplication. cpp

// filename: MPIMatrixVectorMultiplication.cpp
#include <mpi.h>

int main (int argc, char *argv([]) {
int A[4][4], bl[4], c[4], line[4], temp[4],
local_value, myid;
MPI_TInit (&argc, &argv) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;

if (myid == 0) {/* initialization */
for (int 1=0; 1<4; 1i++) {
bl[i] = 4 2 1i;
for (int j=0; 3j<4; J++)
A[i]l[3]1 = 1 + 3
}
line[0]1=A[0][0];
line[1]=A[0]1[17];
line[2]1=A[0]11[2];
line[3]1=A[0]1[3];
}
if (myid == 0) {

for (int i=1; i<4; i++) {// slaves perform
multiplications

temp [0]=A[1i][01];

temp[1] = A[i][1];
temp [2] = A[i]l[2];
temp [3] = A[i]1I[31;

MPI_Send(temp, 4, MPI_INT, i, 1,
MPI_COMM_WORLD) ;
MPI_Send(b, 4, MPI_INT, i, i, MPI_COMM_WORLD)
}
} else {
MPI_Recv(line, 4, MPI_INT, 0, myid,
MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
MPI_Recv(b, 4, MPI_INT, 0, myid, MPI_COMM_WORLD
, MPI_STATUS_IGNORE) ;
}
{// master node
c[myid] = 1line[0] * b[0] + 1line[l] * b[l] + 1line
[2] * b[2] + line[3] * b[3];
if (myid !'= 0) {

http://dx.doi.org/10.1007/978-3-319-21903-5_5

50

2.9.2

2 Introduction to MPI: The Message Passing Interface

MPI_Send (&c[myid]l, 1, MPI_INT, 0, myid,
MPI_COMM_WORLD) ;

} else {
for (int 1=1; 1<4; 1i++) {
MPI_Recv(&c[i1], 1, MPI_INT, 1, i,

MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
}

}
MPI_Finalize () ;
return O0;

Example of MPI Reduce Operations: Computing
the Factorial and Minimum Value of an Array

The following code illustrates how to perform a global calculation in MPI using a
collective reduce operation:

WWW source code: MPIFactorialReduce. cpp

// filename: MPIFactorialReduce.cpp
#include <stdio.h>
#include "mpi.h"

int main (int argc, char *argvI[]) {

int i,me, nprocs;
int number, globalFact=-1, localFact;

MPI_Init (&argc, &argv) ;

MPI_Comm_size (MPI_COMM_WORLD , &nprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &me) ;

number=me+1;

MPI_Reduce (&number ,&globalFact ,1,MPI_INT,
MPI_PROD,0,MPI_COMM_WORLD) ;

if (me==0) printf ("Computing the factorial in
MPI: %d processus = %d\n",nprocs,globalFact) ;

localFact=1; for(i=0;i<nprocs;i++) {localFact*=
(i+1) ;13

if (me==0) printf ("Versus local factorial: %d\n"
,localFact) ;

MPI_Finalize () ;

}

2.9 Examples of MPI Programs with Their Speed-Up Analysis 51

We now turn to a more elaborate example: computing the global minimum value
of a set of arrays stored in the local memories of processes:

WWW source code: MPIMinimumReduce. cpp

// filename: MPIMinimumReduce.cpp
#include <mpi.h>
#include <stdio.h>

#tdefine N 1000

int main (int argc, char** argv) {
int rank, nprocs, n, 1i;
const int root=0;

MPI_Init (&argc, &argv) ;
MPI_Comm_size (MPI_COMM_WORLD, &nprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;

float val[N];
int myrank, minrank, minindex;
float minval;

// £fill the array with random values (assume UNIX here)
srand (2312+rank) ;
for (i=0; i<N; 1i++) {vall[il=drand48 () ;}

// Declare a C structure
struct { float value; int index; } 1in, out;

// First, find the minimum value locally

in.value = val[0]; in.index = 0;
for (i=1; 1 <N; i++)
if (in.value > wvall[il) {
in.value = wvall[il]; in.index = 1i;
}

// and get the global rand index
in.index = rank*N + in.index;

// now the compute the global minimum
// the keyword in MPI for the binary commutative operator
is MPI_MINLOC
MPI_Reduce((void*) &in, (void~*) &out, 1,
MPI_FLOAT_INT, MPI_MINLOC, root, MPI_COMM_WORLD
) ;

52 2 Introduction to MPI: The Message Passing Interface

if (rank == root) {
minval = out.value; minrank = out.index / N;

minindex = out.index % N;

printf ("minimal wvalue %f on proc. %d at
location %d\n", minval, minrank, minindex) ;

}

MPI_Finalize () ;

2.9.3 Approximating m with Monte-Carlo Stochastic
Integration

We describe the Monte-Carlo sampling approach to approximate a complex integral
calculation by a discrete sum. Loosely speaking, Monte-Carlo sampling is bypassing
the continuous integral [calculation by approximating it with a discrete sum: [~
>". To approximate 7 (an irrational number), we draw randomly n points uniformly
inside the unit square. We then compute the ratio of the number of points n. falling
inside the unit disk positive orthant over the total number of drawn points. Therefore
we can deduce that:

T Ne _4nc
- —, T, =
4 n n

The approximated value of 7 converges very slowly in practice, but this estimator
is proven to be statistically consistent since we have the following theoretical result:

lim 7, = .
n—0oQ

Fig. 2.7 Monte-Carlo
rejection sampling to
approximate 7: we draw at °
random 7 points uniformly
in the unit square, and we
count the number of points
that fall within the unit
radius circle centered at the
origin (n.). We approximate
7 as the ratio 2¢

2.9 Examples of MPI Programs with Their Speed-Up Analysis 53

Moreover, this approach is pretty easy to parallelize, and the speed-up is linear,
as expected. Figure 2.7 illustrates this Monte-Carlo stochastic estimation of 7 by the
method called rejection sampling.

WWW source code: MPIMonteCarloPi.cpp

// filename: MPIMonteCarloPi.cpp
int main (int argc, char *argv([]) {

MPI_Init (&argc, &argv) ;

#define INT_MAX_ 1000000000

int myid, size, inside=0, outside=0, points
=10000;
double x, y, Pi_comp, Pi_real
=3.141592653589793238462643;

MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;
MPI_Comm_size (MPI_COMM_WORLD, &size);

if (myid == 0) {
=1; i<size; i++) /* send to slaves
*/
MPI_Send (&points, 1, MPI_INT, i, 1,
MPI_COMM_WORLD) ;
} else
MPI_Recv (&points, 1, MPI_INT, 0, i,
MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
rands=new double[2*points];

for (int 1=0; 1i<2*points; 1++) {
rands [1]=random () ;
if (rands[1]<=INT_MAX_)
i++

for (int 1i=0; i<points; i++) {
x=rands [2*1]/INT_MAX_;
Y
=rands [2*1+1]/INT_MAX_;
if ((x*x+y*y)<1l) inside++ /* point inside
unit circle*/

delete[] rands;

if (myid == 0) {
for (int i=1; i<size; i++) {
int temp;
MPI_Recv (&temp, 1, MPI_INT, i, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE) ;
inside+=temp;
} /* master sums all */
} else

54 2 Introduction to MPI: The Message Passing Interface

MPI_Send (&inside, 1, MPI_INT, O, 1,

MPI_COMM_WORLD); /* send inside to master */
if (myid == 0) {
Pi_comp = 4 * (double) inside / (double) (size*
points) ;
cout << "Value obtained: " << Pi_comp << endl <<
"Pi:" << Pi_real << endl;

}
MPI_Finalize () ;

return O0;

2.9.4 Monte-Carlo Stochastic Integration for Approximating
the Volume of a Molecule

A molecule M is modeled by a set of n 3D spheres where each sphere represents an
atom (with given location and radius). We would like to compute the volume v (M)
of the molecule M (that is, the volume of the union of spheres). We shall approximate
this volume by performing a stochastic approximation: first, we compute an enclosing
bounding box BB, and then we perform rejection sampling inside this bounding box.
We draw a set of e uniform variates inside BB and count the number of variates e’
falling inside the union of spheres. Then we approximate v(M): v(M) =~ %v(BB).

Figure 2.8 illustrates the Monte-Carlo rejection sampling for computing the union
of a set of 2D balls. The sequential code is given below:

WWW source code: SequentialVolumeUnionSpheres.cpp ‘

// filename: SequentialVolumeUnionSpheres.cpp

// Sequential implementation of the approximation of the
volume of a set of spheres

#include <limits>

#include <math.h>

#include <iostream>

#include <stdlib.h>

#include <time.h>

#define n 8*2
#define d 3
#define e 8*1000

double get_rand (double min, double max) {
double x = rand () / (double) RAND_MAX;
return x * (max - min) + min;

2.9 Examples of MPI Programs with Their Speed-Up Analysis

55

Fig. 2.8 Monte-Carlo rejection sampling to approximate the volume of the union of balls M: first,
we compute the bounding box (BB) of the balls. Then we draw uniformly inside BB e samples and
approximate the volume of the union of balls by v(M) ~ %U(BB)

double distance2 (double pO[d],

int

double x = 0;

double pl[d])

for (int i = 0; i < d; 1i++) {
double diff = pO0[i] - pll[il;
x += diff * diff;

}

return x;

main (int argc, char** argv) {

srand (0) ;

double radius([n];

double C[n][d];

// Generate data

for (int 1 = 0; i < n; i++) {
radius[i] = get_rand(l, 5);
for (int j = 0; J < 4d; Jj++) Cl[il1[3]

get_rand (-20, 20) ;

}
// Compute bounding box

double bb[d][2];
for (int 1 = 0; 1 < d; 1i++)

{

{

56 2 Introduction to MPI: The Message Passing Interface

bb[1][0] = std::numeric_limits<double>::
infinity () ;
bb[1][1l] = -std::numeric_limits<double>::

infinity () ;

}
for (int 1 = 0; 1 < n; 1++) {
for (int j = 0; J < 4d; Jj++) {
bb[jl[0] = fmin(bb[3j1([0], C[il[3] -
radius[i]) ;
bb[jl[1] = fmax(bb[jl[1], C[il[3] +
radius[1i]) ;
}
}
// Compute the volume of the bounding box
double volBB = 1;
for (int 1 = 0; i < d; 1i++) volBB *= bbl[i][1l] -
bb[i][0];

// Draw samples and perform rejection sampling
int ePrime = 0;

for (int i = 0; i < e; 1i++) {
double pos[d];
for (int j = 0; j < d; j++) posI[jl =
get_rand (bb([j1[0], bb[j][1]);
for (int j = 0; j < n; j++) |

if (distance2 (pos, C[3j]l) < radiusI[j]l *
radius[Jj]) {
ePrime++;

}
}
// Compute the volume
double vol = volBB * (double)ePrime / double(e) ;
std::cout << vol << std::endl;
std::cout << ePrime << std::endl;
return 0;

}

Let us implement this sequential code on a cluster of machine. Initially, we assume
that the collection of spheres is stored on the root process (say, of rank 0), and we
shall distribute those data using a scattering operation. Then we compute in parallel
the bounding box by taking the bounding box of local bounding boxes using reduce
operations (with the binary operators MPT_MIN and MPI_MAX). Then the random
variates are sampled by the root process and dispatched to all processes using another
scattering operation. Then each process tests whether the variates fall inside the union
ofits local set of spheres, and finally we aggregate the accepted variates using another
reduce operation with the logical OR as the binary operator: MPT_LOR.

2.9 Examples of MPI Programs with Their Speed-Up Analysis 57

The MPI implementation is given below:

WWW source code: MPIVolumeUnionSpheres. cpp

// filename: MPIVolumeUnionSpheres.cpp

// Parallel implementation of the approximation of the volume
of a set of spheres

#include <limits>

#include <math.h>

#include <iostream>

#include <stdlib.h>

#include <time.h>

#include "mpi.h"

#define n 8*2
#define 4 3
#define e 8*1000

double get_rand (double min, double max) {
double x = rand() / (double)RAND_MAX;

}

double distance2 (double p0O[d], double pl[d]l) {
double x = 0;
for (int i = 0; i < d; 1i++) {
double diff = pO[i] - pll[il;
x += diff * diff;
}

return x;

int main (int argc, char** argv) {
srand (0) ;
MPI_Init (&argc, &argv) ;

int n_proc, rank;
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &n_proc) ;

double radiusO[n];
double CO[n][d];
// Generate data

if (rank == 0) {
for (int i = 0; i < n; 1++) {
radius0[i] = get_rand (1, 5);
for (int j = 0; j < d; Jj++) CO[i]1[]] =

get_rand (-20, 20) ;

58

2 Introduction to MPI: The Message Passing Interface

// Send data to processes
double radius[n];
double C[n][d];

int begin = n / n_proc*rank;

int loc_n = n / n_proc;

MPI_Scatter (radius0O, loc_n, MPI_DOUBLE, &(radius
[begin]), loc_n, MPI_DOUBLE, 0,

MPI_COMM_WORLD) ;

MPI_Scatter (C0, 3 * loc_n, MPI_DOUBLE, &(Cl[begin
1][01), 3 * loc_n, MPI_DOUBLE, O,
MPI_COMM_WORLD) ;

double bb[d][2];

// Compute the bounding box

for (int i = 0; 1 < d; 1i++) {
bb[1][0] = std::numeric_limits<double>::
infinity () ;
bb[1][1] = -std::numeric_limits<double>::

infinity () ;

for (int j = begin; j < begin + loc_n; J++)
{
bb[i][0] = fmin(bb[i]l[0]1, CI[Jj][i] -
radius[j]) ;
bb[i][1] = fmax(bb[i][1], C[jl[i] +

radius|[3j]) ;

(bb[i][0]) : MPI_IN_PLACE
, MPI_DOUBLE, MPI_MIN, O,

MPI_Reduce (rank ? &
, &(bb[i]1([0]), 1
MPI_COMM_WORLD) ;
&(bb[1][1]) : MPI_IN_PLACE

1, MPI_DOUBLE, MPI_MAX, O,

)

MPI_Reduce (rank ?
, &(bb[i1([11),
MPI_COMM_WORLD

7

// Compute the volume of the bounding box

double volBB = 1;

for (int 1 = 0; 1 < d; 1i++) volBB *= bb[i][1l] -
bb[i][0];

// Draw variates and perform rejection sampling

double samples([e][3];

if (rank == 0) {

for (int 1 = 0; 1 < e; 1++) {
for (imt j = 0; j < d; Jj++) samples[ill]
] = get_rand(bb[j][0], bb[jl[1]);

}
MPI_Bcast (samples, 3 * e, MPI_DOUBLE, O,

MPI_COMM_WORLD) ;

2.9 Examples of MPI Programs with Their Speed-Up Analysis 59

// Testing variates

bool hit[e]

for (int 1 0; 1 < e; i1i++) hit[1i] = false;
for (int 1 = 0; i < e; 1i++) {
for (int j = begin; j < begin + loc_n; Jj++)
{
if (distance2 (samples[i], C[Jj]) < radius
[j] * radiusI[3j]) hit[i] = true;

}

// Gather results and count the accepted variates

bool hitO[e];
for (int 1 = 0; i < e; 1i++) hit0[i] = false;

MPI_Reduce (hit, hit0, e, MPI_C_BOOL, MPI_LOR, O,
MPI_COMM_WORLD) ;

if (rank == 0) {
int ePrime = 0;
for (int i = 0; i < e; 1i++) {
if (hitO[1]) ePrime++;
}
double vol = volBB * (double)ePrime / double
(e);

std::cout << vol << std::endl;
std::cout << ePrime << std::endl;

}

MPI_Finalize () ;
return 0;

2.10 References and Notes

A precursor of the MPI standard was the software library PVM'8 that stands for
Farallel Virtual Machine. That PVM library already had both the synchronous and
asynchronous communication primitives. The MPI standard is well-covered in many
textbooks dealing with parallel computing, see [3, 4] for example. In this chapter,
we have only covered the main concepts and primitives of the MPI library. We
recommend the interested reader these following books [5, 6] that fully cover all
functionalities of the first and second standard versions (called MPI-I and MPI-II).
There are many interesting mechanisms in the MPI standard that have been designed
to facilitate parallel programming: for example, one can define derived types using

18http://www,c:sm.ornl.gov/pvm/.

http://www.csm.ornl.gov/pvm/

60 2 Introduction to MPI: The Message Passing Interface

MPI_type_struct, and so on. The last standard version is MPI-3 and its usages
are described in the recent book [7]. Parallel prefix operations (or scan) in MPI are
well-studied, highly optimized and benchmarked in the research paper [8].

2.11 Summary

MPI is a standardized Application Programming Interface (API) that allows one to
provide unambiguously the interface (that is, the declaration of functions, procedures,
data-types, constants, etc.) with the precise semantic of communication protocols and
global calculation routines, among others. Thus a parallel program using distributed
memory can be implemented using various implementations of the MPI interface
provided by several vendors (like the prominent OpenMPI, MPICH2," etc.) Commu-
nications can either be synchronous or asynchronous, bufferized or not bufferized,
and one can define synchronization barriers where all processes have to wait for
each other before further carrying computations. There is a dozen MPI implemen-
tations available, and those implementations can further be called in many different
languages (usually C, C++ and Python) using an appropriate language binding (a
wrapper library to the underlying MPI implementation of the MPI standard). The
last installment of the MPI standard is MPI-3 that it offers beyond the usual basic
communication routines (broadcast, scatter, gather, all-to-all) over 200 functions that
also allow one to also manage the Input/Output (I/O) in a distributed fashion as well.

2.12 Exercises

Exercise 1 Consider the mathematical identity = = j;,oo : fxﬁ dx to approximate 7

by a Monte-Carlo stochastic integration. Fill the missing parts of the MPI program
below (using the C++ binding):

’ WWW source code: MPIPiApproximationHole. cpp

// filename: MPIPiApproximationHole.cpp
#include <math.h>

#include "mpi.h"

#include <iostream>

using namespace std;

int main (int argc, char *argv[]) {
int n, rank, size, 1i;
double PI = 3.141592653589793238462643;
double mypi, pi, h, sum, x;

http://www.mpich.org/.

http://www.mpich.org/

2.12 Exercises 61

MPI::Init (argc, argv);
size = MPI::COMM_WORLD.Get_size () ;
rank = MPI::COMM_WORLD.Get_rank () ;

while (1) {

if (rank == 0) {
cout << "Enter n (or an integer < 1 to
exit) :" << endl;

cin >> n;

}

MPI:: COMM_WORLD.Bcast (...);
if (n<1l) {

break;
} else {
h = 1.0 / (double) n;
sum = 0.0;
for (i = rank + 1; i1 <= n; 1 += size) {
X h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}
mypi = h * sum;
MPI:: COMM_WORLD.Reduce (...) ;
if (rank == 0){
cout << "pi 1is approximated by " <<
pi
<< ", the error is " << fabs(pi

- PI) << endl;

}
}
MPI::Finalize () ;
return O0;

Exercise 2 (Monte-Carlo rejection sampling in MPI) In statistics, to sample inde-
pendently and identically variates following a probability density function f(x)
defined over a finite support [m, M] with maximal mode f), (the largest value of
f(x)), we can proceed as follows: sample a uniform variate #; from the uniform dis-
tribution u; ~ U (m, M), and then sample a uniform variate u, from the uniform dis-
tribution [0, F]. Acceptu; ifu, < f(u;) andrejectit otherwise. Intuitively speaking,
to explain that this procedure produces independently and identically variates follow-
ing density f(x), consider throwing darts on a blackboard rectangle [m, M] x [0, F]
and keep only the x-coordinate of darts falling below the density curve. The rejection
sampling technique works for non-normalized densities ¢ (x) so that f(x) = g(x)/Z
where Z = L q(x)dx is the implicit normalization factor (a constant). Implement a
MPI procedure on P processes that draws n random variates of the truncated stan-
dard normal distribution defined on the support [—1, 1], with unnormalized density

62 2 Introduction to MPI: The Message Passing Interface

q(x) = exp(— %). Observe that this is a generalization of the Monte-Carlo approx-
imation method of .

Exercise 3 (Computing the volume of the intersection of balls in MPI) In Sect.2.9.4,
we provided some sequential and parallel implementations for approximating the
volume of the union of balls by a Monte-Carlo stochastic approximation scheme.
Show how to adapt the distributed MPI code for approximating the volume of the
intersection of a set of balls.

References

1. Kernighan, B.W,, Ritchie, D.M.: The C Programming Language, 2nd edn. Prentice Hall Profes-
sional Technical Reference, Englewood Cliffs (1988)

2. Stroustrup, Bjarne: The C++ Programming Language, 3rd edn. Addison-Wesley Longman Pub-
lishing Co. Inc, Boston (2000)

3. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing: Design and
Analysis of Algorithms. Benjamin-Cummings Publishing Co. Inc, Redwood City (1994)

4. Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman and Hall/CRC numerical
analysis and scientific computing. CRC Press (2009)

5. Snir, M, Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Reference,
Volume 1: The MPI Core, 2nd edn. MIT Press, Cambridge (1998). (revised)

6. Gropp, W.D., Huss-Lederman, S., Lumsdaine, A., Inc netLibrary: MPI: The Complete Refer-
ence. Vol. 2, The MPI-2 Extensions. Scientific and engineering computation series. MIT Press,
Cambridge (1998)

7. Gropp, W., Hoefler, T., Thakur, R., Lusk, E.: Using Advanced MPI: Modern Features of the
Message-Passing Interface. MIT Press (2014)

8. Sanders, P., Larsson Triff, J.: Parallel prefix (scan) algorithms for MPI. In: Recent Advances in
Parallel Virtual Machine and Message Passing Interface, pp. 49-57. Springer (2006)

2 Springer
http://www.springer.com/978-3-319-21902-8

Introduction to HPC with MPI for Data Science
Mielsen, F.

2016, XX, 282 p. 101 illus. in color., Softcover
ISBMN: 278-3-319-21902-8

	2 Introduction to MPI: The Message Passing Interface
	2.1 MPI for Parallel Programming: Communicating with Messages
	2.2 Parallel Programming Models, Threads and Processes
	2.3 Global Communications Between Processes
	2.3.1 Four Basic MPI Primitives: Broadcast, Gather, Reduce, and Total Exchange
	2.3.2 Blocking Versus Non-blocking and Synchronous Versus Asynchronous Communications
	2.3.3 Deadlocks from Blocking Communications
	2.3.4 Concurrency: Local Computations Can Overlap with Communications
	2.3.5 Unidirectional Versus Bidirectional Communications
	2.3.6 Global Computations in MPI: Reduce and Parallel Prefix (Scan)
	2.3.7 Defining Communication Groups with Communicators

	2.4 Synchronization Barriers: Meeting Points of Processes
	2.4.1 A Synchronization Example in MPI: Measuring the Execution Time
	2.4.2 The Bulk Synchronous Parallel (BSP) Model

	2.5 Getting Started with the MPI: Using OpenMPI
	2.5.1 The ``Hello World'' Program with MPI C++
	2.5.2 Programming MPI with the C Binding
	2.5.3 Using MPI with C++ Boost

	2.6 Using MPI with OpenMP
	2.6.1 Programming MPI with the Python Binding

	2.7 Main Primitives in MPI
	2.7.1 MPI Syntax for Broadcast, Scatter, Gather, Reduce and Allreduce
	2.7.2 Other Miscellaneous MPI Primitives

	2.8 Communications on the Ring Topology with MPI
	2.9 Examples of MPI Programs with Their Speed-Up Analysis
	2.9.1 The Matrix--Vector Product in MPI
	2.9.2 Example of MPI Reduce Operations: Computing the Factorial and Minimum Value of an Array
	2.9.3 Approximating π with Monte-Carlo Stochastic Integration
	2.9.4 Monte-Carlo Stochastic Integration for Approximating the Volume of a Molecule

	2.10 References and Notes
	2.11 Summary
	2.12 Exercises
	References

